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Despite the simplicity of the system, the description of the excited-state properties of the cleavage surface of
diamond requires the use of nonstandard treatment of many-body effects. Using a simple tight-binding model,
we show that the typical assumption concerning the identity of quasiparticle and Kohn-Sham wave functions
fails in an important part of the Brillouin zone. This simple model allows computation of the qualitatively
different quasiparticle wave functions. The optical properties calculated with these wave functions at the
Bethe-Salpeter level show important excitonic effects. Moreover the line shape of the reflectance anisotropy
spectrum is significantly improved when compared to the measured one.
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I. INTRODUCTION

Chemical vapor deposition �CVD� techniques, permitting
the low cost fabrication of high quality diamond,1 have
brought up considerable interest in diamond, especially for
the exploitation of its extreme electronic and chemical prop-
erties in �bio�technological devices.2 Its great surface chemi-
cal inertness and high degree of biocompatibility make dia-
mond well suited for biomedical applications. Moreover the
increasing crystal quality of phosphorus and boron-doped
homoepitaxial diamond films3 opens the way for manufac-
turing high quality electronic devices.

The surface properties of diamond are in part similar to
Ge and Si surface properties. However there are some im-
portant differences: starting from the details of the recon-
structions and going on to the negative electron affinity of
the hydrogen-terminated diamond surfaces to the possibility
of surface transfer doping.4

In this work we focus our attention to the clean, recon-
structed �111� surface of diamond. The �111� plane is the
cleavage face of diamond and one of the growth planes dur-
ing the CVD process. With respect to C�100�, which is the
other CVD growth plane, C�111� shows a higher electron
mobility in phosphorus-doped samples,3 a higher boron in-
corporation rate,5 and a higher transition temperature of su-
perconducting boron-doped diamond.6 All these properties,
together with the improved crystalline quality recently
achieved,3 make this surface technologically relevant. The
clean �111� 2�1 reconstructed surface is in principle a
simple prototypical system; however important issues con-
cerning its electronic and optical properties are not fully un-
derstood.

Right after cleavage the �111� surface of diamond is un-
reconstructed with each dangling bond saturated by a hydro-
gen atom. After annealing at more than 700 K, hydrogen
desorbs and the surface shows a 2�1 reconstruction. The
reconstruction geometry, shown in Fig. 1�a�, involves a
strong rearrangement of the top layer atoms, forming the
so-called �-bonded Pandey chains7 along the y direction.
Contrary to the case of the cleavage surface of Si and Ge, the
atoms belonging to the chains are neither buckled nor dimer-

ized in all well converged ground-state calculations.8 The
dispersion of the electronic surface bands can bear witness to
the presence of one-dimensional structures in the reconstruc-
tion. In fact, angle-resolved photoemission spectra �ARPES�
show that the occupied surface bands have a strong disper-
sion along the chain direction ��−J and J�−K in the irreduc-
ible Brillouin zone �IBZ�, see Fig. 1�b�� and are almost flat
perpendicular to it �i.e., along the J−K and �−J�
directions�.9 Density-functional theory �DFT� �Ref. 10�
band-structure calculations8 are able to well reproduce the
occupied surface-state dispersion. However, all the calcula-
tions show that the surface is semimetallic, with the surface
bands crossing the Fermi level at the J−K line. The existence
of a gap in the quasiparticle �QP� band structure of the sur-
face can be found by theory only through the careful treat-
ment of many-body effects by an iterative GW �Ref. 11�
procedure.12 This procedure leads to a minimum direct gap
of about 1 eV, in rough agreement with the onset of energy-
loss spectra.13 Even so, recent reflectance anisotropy spectra
�RAS� �Ref. 14� revealed a larger optical gap of 1.47 eV.15

FIG. 1. �Color online� �a� Ground-state geometry of the �111�
surface of diamond and �b� its first Brillouin zone. The top panel in
�a� is the side view of the first atomic layers while the bottom panel
is the top view of the surface. Carbon atoms belonging to the sur-
face �-bonded chains are in gray. The four lines along which the
IBZ is sampled are shown in �b�. The QP wave functions have been
computed for the k points within the red-shaded area.
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This result, especially taking into account the possibility of
significant excitonic effects,16 calls for further theoretical in-
vestigations to understand and correct the underestimation of
the electronic gap.

A larger electronic gap could be obtained if the chains
varied from their unbuckled, undimerized geometry.17,18

However, dimerization is ruled out by experiments.9 Buck-
ling is not completely ruled out19,20 but within DFT it ap-
pears energetically unfavorable whatever functional is used
for the exchange-correlation potential.21 Moreover, low-
energy electron-diffraction �LEED� spot intensity vs voltage
data22 compared to the DFT results show a very good agree-
ment for all the structural parameters.23

The state of the art theoretical tool for the determination
of the quasiparticle electronic structure of materials is based
on the so-called GW approximation.11 This approach, within
the framework of many-body perturbation theory, consists in
evaluating the electronic self-energy � as the product of the
Green’s function G and the screened Coulomb interaction W,
namely ��1,2�= iG�1,2�W�2,1�, where �1,2� stand for time,
space, and spin indexes. The GW approximation neglects the
vertex corrections in the expression of self-energy. However,
this is not the only approximation that is applied. Usually, the
QP band structure is obtained by taking into account self-
energy effects in a first-order perturbation scheme with re-
spect to the unperturbed Kohn-Sham �KS� Hamiltonian.10

Moreover, since the true Green’s function and the true
screened Coulomb interaction are unknown, the self-energy
and its matrix elements, as well as the random-phase ap-
proximation �RPA� dielectric matrix, are computed by means
of the KS eigenvalues and eigenfunctions of the DFT. This is
the so-called G0W0 approximation of the self-energy. G0W0
has been proven to be a very reliable scheme on a variety of
materials.24 However, as shown in Ref. 12, G0W0 fails in
reproducing even qualitatively the semiconducting character
of C�111�2�1. As mentioned above, the semiconducting
character of this surface can be restored through a self-
consistent procedure, yielding a minimum direct gap of 1 eV.

During each cycle of this procedure, the QP energies are
updated in both G and W but the wave functions are kept
fixed to their original KS values.

In many semiconductors, in fact, KS orbitals describe
quite well the corresponding QP wave functions.11,25,26 Nev-
ertheless, it is sometimes necessary to go beyond this level of
approximation. In fact, to correctly describe the single-
particle excited states of different systems, it has been essen-
tial in some cases to diagonalize the self-energy matrix,27–29

in some other cases to use wave functions stemming from
nonlocal potentials,30–34 or finally to achieve a full self-
consistent solution of the Dyson equation.25,33 In this paper
we want to analyze if, also for C�111�, the KS wave func-
tions are unsuited to describe the QP orbitals. The large sur-
face gap corrections �from 0.1 to about 1 eV, see Fig. 2�
strongly suggest that the QP wave functions are different
from DFT ones. In order to shed light on this point, we
modeled the quasiparticle electronic structure of the surface
chains within a tight-binding model. We will show that,
whereas at the JK line the QP wave functions and the DFT
ones are the same by symmetry, in a region very close to it,
where the DFT gap is much smaller than the GW correction,
the QP wave functions are very much different from the DFT
ones. Our results show that, when exciting the system upon
adding an electron or a hole, the probability to find the par-
ticle is localized on one of two chain atoms. This excited-
state physics apparently cannot be captured by a ground-state
theory, such as DFT, where the discrimination of the two
atoms can stem only from a geometric distortion that, in the
case of diamond, proves to be too expensive from an elastic
energy point of view.

The paper is organized as follows: first we introduce the
chain model. Then we describe the QP wave function �cal-
culated within tight binding� and compare them to the KS
ones. Finally, we will demonstrate how the QP wave func-
tions influence the reflectance anisotropy �RA� spectrum.
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FIG. 2. �Color online� DFT �left� and GW
�right� band structures from Ref. 12. Crosses: ex-
periments from Refs. 9 and 35.
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II. MODEL QUASIPARTICLE WAVE FUNCTIONS OF
SURFACE BANDS

For the C�111�2�1 surface, the two � and �� related
surface bands are well energetically separated from the pro-
jected bulk band structure. This fact allows us to use a simple
model based on one-dimensional chains with two carbon at-
oms per unit cell, the lattice parameter being a. Each chain
atom has one atomic orbital �1 or �2, which represents the
surface-atom �z orbital. In the basis of the atomic orbitals,
the tight-binding Hamiltonian H is given by

� �1 t�1 + exp−ikya�
t�1 + expikya� �1 + D

� . �1�

The low dimensionality of this model can be justified by
thinking that the surface states present within the gap have a
very small dispersion in the direction JK perpendicular to the
chain �see Fig. 2�, in comparison with the direction �J par-
allel to it. This means that the wave functions are well local-
ized along the chains and the interchain interaction is very
weak. t is the overlap matrix element while D is the param-
eter used to describe the opening of the gap.36 Here we use it
to describe the self-consistent QP bands12 with an opened
gap. We have to mention that such a parameter can also be
used to describe the effects of symmetry breaks �such as a
buckling of the chains� in the ground state.36 However this is
not our case, as the opening of the gap in the GW calcula-
tions is due to many-body effects and not to geometric dis-
tortions.

The IBZ of the model is a line going from ky =0 to ky
=� /a.37 Hence we must map the �two-dimensional� surface
band structure into the model’s one-dimensional band struc-
ture. In our 4�64 sampling of the IBZ �see Fig. 1�, for each
fixed kx, we have a line of k points parallel to the y axis. For
every k-point line we can diagonalize the Hamiltonian �1�,
obtaining the two one-dimensional energy bands:

E1�ky� = �1 +
D − 	D2 + 16t2 cos2�kya/2�

2
, �2�

E2�ky� = �1 +
D + 	D2 + 16t2 cos2�kya/2�

2
. �3�

Hence, for each fixed kx, D is equal to the minimum gap at
ky =� /a, i.e., at a k point lying on the JK line. At the same
time, for a generic ky, its square is given by Eg

2�ky�=D2

+16t2 cos2�kya /2�. The eigenfunctions of the Hamiltonian
�1� are linear combinations of the two atomic orbitals, e.g.,
� j�ky�=cj1�ky��1+cj2�ky��2 �j=1,2�, with:


cj1�ky� =
H12�ky�

	�Ej�ky�−�1�2+�H12�2 ,

cj2�ky� =
Ej�ky�−�1

	�Ej�ky�−�1�2+�H12�2 .
� �4�

When ky =� /a, i.e., along the JK line, where the coupling of
the two dangling bonds vanishes, H12�ky�=0, one has for
D	0

c11 = − i ,

c12 = 0. �5�

This means that along the JK line the valence-band wave
function is completely localized on atom 1 of the chain, with
the dangling bond of the lower energy. Vice versa, it can
easily be found that the conduction-band wave function is
localized on atom 2.

When the Brillouin zone �BZ� point is far enough from
the JK line, so that 16t2 cos2�kya /2�
D2, then

c11�ky� = exp−ikya/2

	2
,

c12�ky� = − 1
	2

. �6�

In this BZ region, where the gap Eg�ky� is much larger
than the minimum gap D, the valence wave functions exhibit
a delocalized character having exactly the same weight on
the two dangling bonds. The same can be stated for the
conduction-band wave functions. In between this two limits
there will be a region of the BZ where the wave functions
will still have most of their weight on one of the two orbitals.

To summarize we can distinguish three regions in the
IBZ, namely: �1� ky =� /a �along JK�. Here the valence or
conduction QP wave functions are localized on one or the
other dangling bond of the surface unit cell, respectively. �2�
in D2	16t2 cos2�kya /2�. Here the QP wave functions have
still most of the weight on one of the two dangling bonds. �3�
in 16t2 cos2�kya /2�
D. Here the QP wave functions have
the weight equally distributed among the two dangling
bonds.

Of course the transition between regions 2 and 3 must be
smooth. However, the fact that the QP minimum gap is much
larger than the DFT one �as proven in Ref. 12� implies that
region 2 is much more extended in the QP case than in the
DFT case. In this exceeding area of the IBZ, the QP and the
DFT wave functions are qualitatively different. In the first
case, they are localized on one out of two atoms of the chain;
in the latter �which may be simulated by D→0� they have a
delocalized character.

The region of the IBZ where this mainly happens is close
to the JK line �the red-shaded area of Fig. 1�. This is the very
region that gives the strongest contributions to the low-
energy optical-absorption peak. In this important part of the
IBZ, the KS wave functions are a rather bad zeroth-order
approximations of the QP wave functions.

If now we get the expression of the atomic orbital wave
functions in terms of the KS ones, we can use it to obtain the
QP wave functions using in Eq. �4� the QP parameters. In
order to do this, we fit the model’s bands with both the DFT
and GW surface bands for every k-point line. In this way we
obtain a set of four tQP�kx� �tDFT�kx�� and four DQP�kx�
�DDFT�kx��, and, of course, the expression of the DFT and QP
wave functions in terms of the atomic orbitals for each k
point. The best-fit parameters are shown in Table I. We note
that, since the dispersion along kx is very weak, the param-
eters for the different k-point lines are similar, DQP
=1.1 eV �DDFT�0.1 eV� and tQP�3.2 eV �tDFT�2.2 eV�.
We can now invert the expression of the KS wave functions
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in terms of the atomic orbitals and determine the QP wave
functions.

In Fig. 3, we plot the square modulus of the KS and QP
surface-state wave functions of a generic k point belonging
to the red-shaded area of Fig. 1�b�. As we can see, both the
valence and conduction KS states are delocalized while the
QP states are localized on one out of every two atoms. The
difference between the two kinds of wave functions is not
only quantitative but really qualitative.

III. OPTICAL PROPERTIES

In this paragraph we will see how the localization of the
chain wave functions is reflected on the optical properties of
the system. Of course, within a simplified tight-binding de-
scription, we aim at obtaining simply a qualitative insight.
This insight, however, is important in understanding the im-
portance of the wave function change on the optical proper-
ties of the system. We have calculated the RA spectra at the
DFT-RPA �i.e., independent-particle� level, and then includ-
ing the excitonic effects in the Bethe-Salpeter equation
�BSE� framework i.e., for a Coulomb-correlated
quasielectron-quasihole pair �for a review see Ref. 38�. RAS
is a typical optical probe for surfaces.14 It measures the dif-
ference in reflectance �r between two orthogonal directions
in the surface plane �xy�, normalized to the mean reflectance.
Since in cubic materials, neglecting nonlinear effects, the

isotropic contribution from the bulk cancels out, RAS is a
surface sensitive technique. It has been shown that,39–41

within a perturbative scheme with respect to the abrupt
Fresnel interface picture, and in the repeated slab framework,
the RAS signal can be calculated by

Re
�r

r
=

4��

c
Im

�yy
hs��� − �xx

hs���
�b − 1

, �7�

where �ii
hs is the so-called half-slab polarizability.41 As al-

ready mentioned, we computed �ii
hs at the DFT-RPA and BSE

levels.
In Fig. 4, we show the calculated RA �Ref. 42� within

three approximations. In addition to the mentioned ones, we
also plot the result computed using KS wave functions but
taken the electron-hole interaction into account �i.e., the stan-
dard BSE calculations�. The positive peak, also present in a
previous tight-binding calculations by Noguez and Ulloa,43 is
due to transitions between surface states. The BSE spectrum
computed with the QP wave functions shows a strong RA
peak at higher energy with respect to the DFT-RPA one. The
corresponding shift in energy can be roughly explained as
the sum of a blueshift due to the GW widening of single-
�quasi�particle transition energies and a redshift due to the
excitonic electron-hole attraction taken into account through
the BSE kernel. The difference between the GW gap and the
first optic peak gives the theoretical estimation of the exciton
binding energy which in this case amounts to 0.4 eV. Its
order of magnitude is in agreement with the one of the
C�100� surface,16 where a binding energy of 0.9 eV was
found. The reason for a smaller binding energy can be found
by comparing the dispersion of the surface bands of the two
surfaces. In the case of C�100� the valence and conduction
surface bands run parallel to each other all along the Bril-
louin zone while for C�111� this happens only along JK. The

TABLE I. The best-fit parameters of the Hamiltonian for the
four k-point lines in Fig. 1�b�. All the parameters are in eV.

k-point line 1 2 3 4

tQP 3.3 3.2 3.1 3.0

tDFT 2.2 2.2 2.1 2.0

DQP 1.1 1.1 1.1 1.1

DDFT 0.1 0.04 0.06 0.09

FIG. 3. �Color online� Square modulus of the KS �left� and QP
�right� �a� valence and �b� conduction wave functions for a generic
point of the red-shaded area of Fig. 1�b�. The KS wave functions
are delocalized on both atoms of the chain while the QP wave
functions are centered on one out of two chain atoms.
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FIG. 4. �Color online� RA spectra calculated at the BSE level
employing QP wave functions �full black line for D=1.1 eV, and
red dot-dashed line for D=1.8 eV�, employing KS wave functions
�green-dashed line�, and at the DFT-RPA level �red full line with
diamonds�. The experimental points from Ref. 15 are shown as
black dots. �Surface chains are along the y direction.�
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bound exciton at the C�111�2�1 surface should be hence
less localized with a larger average electron-hole distance.

If we compare the computed spectra with the experimen-
tal one,15 we can see that the line shape and the peak is well
reproduced. However, although BSE results represent an im-
provement with respect to DFT-RPA ones, the peak energy
�found in the experiment at 1.5 eV� is significantly underes-
timated. This might be due to the starting point of the optical
calculation, namely the GW band structure, computed using
the KS wave functions in the expression of the self-energy12

rather than the QP self-consistent wave functions.
The BSE spectra calculated using the KS wave functions

�dashed line in Fig. 4� is slightly blueshifted with respect to
the BSE spectra computed employing the tight-binding QP
ones �full black line�. The larger binding energy of the latter
can be explained, taking into account the greater semicon-
ducting character of the QP system with respect to the semi-
metallicity of the KS one. Indeed the semimetallic character
of the KS system may give rise to a much more efficient
screening of the electron-hole interaction and hence lower
the excitonic binding energy.

Even if the peak position is somewhat in better agreement
with the experiment in the case of the BSE spectra computed
employing the KS wave functions, the line shape of the ex-
citonic spectra is improved using the QP ones. Indeed fitting
the tight-binding bands with a larger ad hoc D �red dot-

dashed line in Fig. 4� returns essentially the experimental
spectrum. We would like to emphasize that such a larger D,
which corresponds to a gap between surface states of about
1.8 eV, is just a fitting parameter.

IV. CONCLUSIONS

In conclusion, we have shown that, through a simple
tight-binding model, in the case of the C�111� the surface QP
wave functions strongly differ with respect to the KS ones.
This happens in a region of the IBZ, close to the JK line at
the boundary, which is very relevant for the low-energy pair
excitations that probe the electronic gap of the surface. Even
though it did not solve the disagreement concerning the peak
position, the QP wave functions in the excitonic calculations
improve the line shape of the spectra compared with the
experimental data.
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